Functional Coefficient Autoregressive Models: Estimation and Tests of Hypotheses

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Coefficient Autoregressive Models: Estimation and Tests of Hypotheses

In this paper, we study nonparametric estimation and hypothesis testing procedures for the functional coef®cient AR (FAR) models of the form Xt ˆ f1(X tÿd)X tÿ1 ‡ ‡ f p(X tÿd)X tÿ p ‡ å t, ®rst proposed by Chen and Tsay (1993). As a direct generalization of the linear AR model, the FAR model is a rich class of models that includes many useful parametric nonlinear time series models such as the ...

متن کامل

Estimation in Random Coefficient Autoregressive Models

We propose the quasi-maximum likelihood method to estimate the parameters of an RCA(1) process, i.e. a random coefficient autoregressive time series of order 1. The strong consistency and the asymptotic normality of the estimators are derived under optimal conditions.

متن کامل

Estimation in nonstationary random coefficient autoregressive models

We investigate the estimation of parameters in the random coefficient autoregressive model Xk = (φ+ bk)Xk−1 + ek, where (φ,ω 2, σ2) is the parameter of the process, Eb0 = ω2, Ee0 = σ 2. We consider a nonstationary RCA process satisfying E log |φ + b0| ≥ 0 and show that σ2 cannot be estimated by the quasi-maximum likelihood method. The asymptotic normality of the quasi-maximum likelihood estimat...

متن کامل

Gaussian Processes for Functional-Coefficient Autoregressive Models

This work is concerned with nonlinear time series models and, in particular, with nonparametric models for the dynamics of the mean of the time series. We build on the functional-coefficient autoregressive (FAR) model of Chen and Tsay (1993) which is a generalization of the autoregressive (AR) model where the coefficients are varying and are given by functions of the lagged values of the series...

متن کامل

Unified Interval Estimation for Random Coefficient Autoregressive Models

The consistency of the quasi maximum likelihood estimator for random coefficient autoregressive models requires that the coefficient be a non-degenerate random variable. In this paper we propose empirical likelihood methods based on weighted score equations to construct a confidence interval for the coefficient. We do not need to distinguish whether the coefficient is random or deterministic an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Time Series Analysis

سال: 2001

ISSN: 0143-9782,1467-9892

DOI: 10.1111/1467-9892.00217